
IEICE TRANS. COMMUN., VOL.E88–B, NO.12 DECEMBER 2005
4545

PAPER

A Novel Zero-Order FIR Zero-Forcing Filterbanks Equalizer Using
Oblique Projector Approach for OFDM Systems

Chun-Hsien WU†, Student Member and Shiunn-Jang CHERN†a), Affiliate Member

SUMMARY In conventional OFDM systems, the effect of inter-block-
interference (IBI) can be completely removed by inserting sufficient redun-
dant symbols between successive transmission blocks. In this paper, based
on the reformulated received block symbols of the discrete multirate filter-
banks model, a new transceiver model for the cyclic prefix (CP) OFDM
systems is proposed, associated with the oblique projector technique (view
as the pre-processor for achieving IBI-free). Consequently, a novel ISI-free
receiver with the zero-order FIR zero-forcing (ZF) filterbanks equalizer can
be devised, under noise-free environment. For performance comparison
the bit-error-rate (BER) is investigated for the cases of noisy and noise-free
channels. In all cases, viz., the length of CP is shorter or longer than the
order of the channel impulse response, we show that the same BER per-
formance compared with the one suggested in [3] can be achieved, under
the same assumptions and conditions. Since a simple cascade configura-
tion of the IBI cancellation using the oblique projector followed by the ISI
cancellation using the zero-order FIR ZF filterbanks equalizer can be real-
ized for OFDM systems with sufficient or insufficient CP, the complexity
of transceiver design can be reduced.
key words: filterbanks equalizer, oblique projector, CP-OFDM, IBI can-
cellation, ISI cancellation

1. Introduction

The intersymbol interference (ISI) has been a common prob-
lem encountered in conventional telecommunication sys-
tems due to bandlimited and multipath fading channel.
These give rise to the need for equalization in order to reli-
ably demodulate the information-bearing signals of interest.
The recent public’s desire for mobile communications and
computing, combined with the rapid growth in demand for
Internet access, suggests a very promising future for wire-
less data services. The multicarrier (MC) modulation tech-
nique is one of the significant candidates for achieving high-
data rate transmission and becomes a topic of great interest,
recently. In MC modulation systems the transmission chan-
nel is partitioned into a multitude of subchannels with its
own associated carrier. Also, the transmitted data stream
is divided into consecutive equal-size blocks. Orthogonal
frequency division multiplexing (OFDM) [2] and coded-
OFDM (COFDM) modulation schemes [9] are two exam-
ples of block transmissions, which have been selected as the
standard for the audio and video digital terrestrial broadcast-
ing systems [10], [11], while the discrete multitone (DMT)
modulation technique [12] has been adopted as the standard
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for asymmetric digital subscriber loop (ADSL).
Due to its efficient implementation, which used the fast

Fourier transforms (FFTs), the DFT-based DMT (or OFDM)
has become extremely popular [17], and has been used to
substitute the original MC technique, with a bank of analog
Nyquist filters [14]. These implementations are particularly
efficient with regard to bandwidth utilization and transceiver
complexity. To maintain the orthogonality or to achieve ISI-
free, the Nyquist filter has shown to be with a rectangular
window (time) function or pulse, when it is modulated by
a DFT for data modulation. Unfortunately, the orthogonal-
ity requirement for subchannels isolation is retained only for
channels, which have virtually no distortion. In general, the
high degree of spectral overlap between DMT (or OFDM)
subchannels has to be compensated with a technique pro-
posed in [17], in which a guard interval with cyclic prefix is
inserted between successive transmission blocks [1], [2].

In general, for OFDM with cyclic prefix/cyclic suf-
fix, a duplication of the last/beginning part of data symbols
is attached to the front/rear of itself, has been adopted in
standard such as 802.11a/g WLAN [23]. The transceiver
model of the typical cyclic-prefix OFDM (CP-OFDM) is
depicted in Fig. 1. In [3]–[5] an alternative type of re-
dundant symbols, referred to as the trailing-zeros (TZ) (or
padding-zeros), was also investigated, and DAB (Digital
Audio Broadcasting) is one of the examples using TZ [10].
Ideally, if the order of channel impulse response (CIR) is
shorter than (or equal to) the length of redundant symbols,
subchannel isolation can be achieved. In consequence, the
ISI and IBI (Inter-block-Interference) induced by imperfect
channel characteristics can be completely removed, simulta-

Fig. 1 The discrete transceiver model for OFDM systems with
cyclic-prefix.
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Fig. 2 Multirate discrete-time baseband equivalent model for block transmissions.

neously. To add sufficient redundancy at the transmitter, in
fact, has been an effective and simple way for devising the
ISI suppression scheme for block transmissions. It certainly
not only provides input diversity for the digital communi-
cation systems, but also offers a capability for removing
IBI. However, block transmission, with added-redundancy,
will increase the total transmission power, reduce the trans-
mission rate and increase the latency for detection [2], [13].
In order to achieve bandwidth efficiency and have superior
IBI suppression capability, simultaneously, how to design
a suitable block transmission scheme, with less redundant
symbols (e.g., cyclic prefix or TZ), has been of great inter-
est for the researchers. In this paper, we will focus on the
transceiver design for the CP-OFDM systems to deal with
the problems of IBI and ISI suppression, although, the pro-
posed scheme can be extended to the TZ-OFDM.

To design the transceiver of the OFDM (or DMT) sys-
tems, recently, the discrete time model of transceiver struc-
ture based on the concept of multirate filterbanks theory has
been suggested [13]. It makes explicitly use of a structure
as depicted in Fig. 2, which is similar to the orthogonal syn-
thesis/analysis filterbanks or transmultiplexer. In fact, Fig. 2
can be viewed as the discrete baseband equivalent model
of the CP-OFDM transceiver illustrated in Fig. 1. Basi-
cally, the multirate filterbanks theory is connected together
with the application-specific requirements of several differ-
ent communication systems including TDMA, and CDMA
schemes. The synthesis/analysis filterbanks transceiver that
allows perfect recovery of transmission data symbols, in
the absent of background noise, is called perfect recon-
struction (PR) or zero-forcing (ZF) filterbanks. However,
even in the absent of background noise, to suppress the
ISI and IBI induced by imperfect channel characteristics is
still a great challenge. In [3], based on the multirate filter-
banks transceiver model, a framework to encompass afore-
mentioned modulations/precoding schemes was unified, in
which sufficient conditions for the existence of FIR ZF filter-
banks equalizer for different FIR channels were developed,
under noise-free environment.

For further discussion, we let P be denoted as the data
length for each transmission block, it consists of M data
symbols and (P − M) redundant symbols, and typically,
M ≥ (P − M). Suppose that the order of a FIR channel
is L, in [3] the necessary and sufficient condition for FIR ZF
filterbank equalizer under the conditions, e.g., P − M ≥ L

and P−M < L, were discussed. Here, P−M ≥ L means that
the length of redundant symbols (e.g., CP) is longer than the
order of CIR, L, while P − M < L is the opposite. In con-
ventional OFDM systems, with sufficient CP, the IBI-free
is achievable without extra signal processing, and the zero-
order ZF filterbanks equalizer is developed to deal with the
term of ISI only. However, when CP is happened to be in-
sufficient, a non-zero order ZF filterbank equalizer will be
required for suppressing the joint ISI and IBI effects as indi-
cated in [3]. We note that even for P−M ≥ L, the zero-order
FIR ZF filterbanks equalizer may not exist for CP-OFDM
[3]. Also, for P − M < L a time-variant FIR filterbanks
precoder is required to guarantee the existence of channel-
irrespective ZF filterbanks equalizer, and the ZF filterbanks
equalizer may not be the one with zero-order.

In this paper, based on the reformulated received block
symbols of the transceiver model depicted in Fig. 2, a new
structure of transceiver model is proposed, under the con-
dition that the length of CP is shorter or longer than the
order of CIR. First, by applying the oblique projector [6],
[7] (viewed as a pre-processor) to the reformulated received
block symbols the effect of IBI can be completely elimi-
nated. In consequence, a novel ISI-free receiver with the
zero-order FIR ZF filterbanks equalizer can be derived, un-
der noise-free environment. Usually, the possibility of using
just a zero-order FIR ZF equalizer is hold only when the
condition that the length of CP is set equal to or longer than
the order of CIR [3]. For CP-OFDM systems, as will be
proved, numerically, in the computer simulation section, the
proposed scheme would perform equivalently to the unified
scheme addressed in [3], under the same conditions and as-
sumptions. We note that, in conventional approaches, the
oblique projection operators are used to project measure-
ments onto a low-rank subspace along a direction that is
oblique to the subspace.

As claimed in what follows, the main contribution of
this paper is threefold: 1) based on the multirate filterbanks
model, the reformulated received block symbols of the CP-
OFDM is obtained; 2) the oblique projector is employed and
applied to the reformulated received block symbols for com-
pletely eliminating the IBI for block transmissions; and 3)
for CP-OFDM systems, an ISI-free receiver with the zero-
order FIR ZF filterbank equalizer (related to the IBI-free re-
ceived block symbols after oblique projection) will be de-
vised, especially for the case of P−M < L. For introduction,



WU and CHERN: A NOVEL ZERO-ORDER FIR ZERO-FORCING FILTERBANKS EQUALIZER USING OBLIQUE PROJECTOR
4547

this paper is organized as follows: In Sect. 2, the system
model for block transmissions with multirate filterbanks,
and the concept behind the overall FIR ZF filterbank equal-
izer [3] are introduced. In Sect. 3, the reformulated form of
the received block symbols of Fig. 2 is obtained. Based on
the reformulated signal model of the received block sym-
bols, a new overall FIR ZF filterbank equalizer, using the
oblique projector technique, is devised for CP-OFDM sys-
tems. Basically, it can be realized as a simple cascade con-
figuration of the IBI cancellation using the oblique projector
followed by the ISI cancellation using the zero-order FIR ZF
filterbank equalizer. Finally, in Sect. 4, some computer sim-
ulations are carried out to prove, numerically, that the per-
formance, in terms of bit-error-rate (BER), of our proposed
scheme will be equivalent to that derived in [3], under the
same conditions and assumptions. Moreover, the merits of
the new proposed scheme are verified and some conclusions
are given.

2. System Model Description for Block Transmissions

Let us consider a multirate discrete-time baseband equiv-
alent telecommunication system, illustrated in Fig. 2, using
encompassed filterbank precoders and equalizers scheme for
block OFDM transmissions [3], [4], [13]. Although an over-
lapped block transmission system was developed in [15],
in this paper, for simplicity only the non-overlapped block
transmission system will be emphasized.

2.1 General Transmission Signal Model

As depicted in Fig. 2, for block transmissions the nth block
of symbols to be transmitted, after downsamplers M, can be
represented by the M × 1 polyphase vector, i.e.,

s(n) � [s(nM), s(nM + 1), . . . , s(nM + M − 1)]T

where superscript T denotes the transposition. Accordingly,
after using the upsamplers P, the synthesized data vector,
u(n) = [u(nP), u(nP + 1), . . . , u(nP+ P− 1)]T , is designated
by

u(n) =
∞∑

i=−∞
Fi(n)s(n − i) (1)

where the P × M matrices, Fi(n), are the redundant fil-
terbanks precoders. After that the block symbols, u(n),
are transmitted through the channel with impulse response,
h(n). The P × 1 channel output signal vector, x(n), and its
related received noisy signal vector (or data block), y(n), are
denoted as

x(n) � [x(nP), x(nP + 1), . . . , x(nP + P − 1)]T

and

y(n) � [y(nP), y(nP + 1), . . . , y(nP + P − 1)]T ,

respectively, where the noise vector, v(n), is defined by

v(n) � [v(nP), v(nP + 1), . . . , v(nP + P − 1)]T

Consequently, the equalized block symbols, ŝ(n), depicted
in Fig. 2, can be represented in terms of M × P matrices,
G j(n)(the redundant filterbanks equalizer), i.e.,

ŝ(n) =
∞∑

j=−∞
G j(n)y(n − j) (2)

where ŝ(n) � [ŝ(nM), ŝ(nM + 1), . . . , ŝ(nM + M − 1)]T . We
note that for the nth block of symbols to be transmitted,
the columns of the ith matrix Fi(n), whose elements, e.g.,
{Fi(n)}p,m = fm(iP + p), are containing the ith segment of
length P of the filters’ impulse responses, { fm(n)}M−1

m=0 . While
in the receiver, the columns of the jth matrix G j(n), whose
elements, e.g., {G j(n)}m,p = gp( jM + m), are containing the
jth segment of length M of the filters’ impulse responses,
{gp(n)}P−1

p=0 , for p = 0, 1, . . . , P−1 and m = 0, 1, . . . ,M−1 [3].
Based on the definitions addressed above and from Fig. 2,
the received data block, y(n), is given by

y(n) = x(n) + v(n) =
∞∑

m=−∞
Hmu(n − m) + v(n) (3)

with the P × P matrices Hm being defined as

Hm =


h(mP) . . . h(mP + P − 1)
...

. . .
...

h(mP + P − 1) . . . h(mP)

 (4)

Thus, by substituting (1) and (3) into (2), it gives

ŝ(n) =
∞∑

j=−∞

∞∑
m=−∞

G j(n)Hmu(n − m − j)

+

∞∑
j=−∞

G j(n)v(n − j)

=

∞∑
j=−∞

∞∑
m=−∞

∞∑
i=−∞

G j(n)HmFi(n)s(n − i − m − j)

+

∞∑
j=−∞

G j(n)v(n − j) (5)

In this paper, the equivalent FIR channel is composed of the
overall effect of the ideal Nyquist pulse shaping and phys-
ical channel response, and receiver-matched filter [8]. We
note that if the matrices of filterbanks, Fi(n)(or G j(n)), are
considered to be with finite order, the related summation in
(5) will be rendered from infinite to finite.

2.2 FIR Zero-Forcing (ZF) Filterbanks Equalizer

Since the complexity of using the maximum likelihood
(ML) sequence detector will grow exponentially in the pres-
ence of ISI, even though the precoder with moderate num-
bers of filterbanks is used in the transmitter. In practice,
a simpler linear detector with finite order of equalizing fil-
terbanks is preferred, and usually under noise-free or high
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signal-to-noise ratio (SNR) environments, the ZF solution
for perfect symbol recovery is considered, and is also re-
ferred to as the perfect reconstruction (PR) solution. In this
paper, an alternative approach is considered for devising the
ZF solution, which is different from the one derived in [3].
For discussion, we will first briefly describe the so-called
uni f ied ZF solution addressed in [3] under certain assump-
tions. These assumptions are summarized in what follows:

A0) Assumed that the channel is linear time-invariant (LTI)
during block transmissions.

A1) The channel state information (CSI) is known at the
receiver.

A2) The channel impulse response h(l) is of order L and the
channel coefficients h(0) and h(L) are not zeros.

A3) Assumed that the length for each transmission block is
larger than the length of data symbols i.e., P > M, and
M is chosen to satisfy the condition, M > L.

A4) Each transmission block has a zero-order FIR filter-
banks precoder and a corresponding FIR filterbanks
equalizer with order Q − 1. Also, particularly, we as-
sume that the zero-order precoder matrix is with full
column rank M.

We note that in A3), the condition of M > L is not
claimed in [3], however, it has been used very frequently
in the existing literatures. In this paper, CSI represents for
the coefficients of the FIR channel impulse response, e.g.,
h(0), h(1), . . . , h(L). As indicated in A1), if we assumed that
the CSI is known in the receiver, it implies that all the co-
efficients of channel impulse response could be estimated,
perfectly, for a specific application, and A2) is to assure that
the order of channel to be L.

First, with the assumption given in A4), the precoder
in transmitter defined in (1) can be modeled as Fi(n) =
F0(n)δ(i), with rank(F0(n)) = M. Accordingly, the ZF fil-
terbanks equalizer, defined in (2), can be represented by
G j(n) =

∑Q−1
q=0 Gq(n)δ( j − q). In addition, based on the as-

sumptions of A0), A2) and A3), the channel matrices in (3)
will be with order one, e.g., Hm = H0δ(l) + H1δ(l − 1),
where H0 and H1 are designated by

H0 �



h(0) 0 0 . . . 0
... h(0) 0

... 0

h(L) . . .
. . . . . .

...
...

. . . . . .
. . . 0

0 . . . h(L) . . . h(0)



(6)

and

H1 �



0 . . . h(L) . . . h(1)
...
. . . 0 . . .

...

0 . . .
. . . . . . h(L)

...
... . . .

. . .
...

0 . . . 0 . . . 0



(7)

We note that both matrices H0 and H1 are with Toeplitz

form; matrix H1 has nonzero elements only in its L × L top
right submatrix because of the assumptions A2) and A3).
Thus, only the first L samples of the nth received block x(n)
will be corrupted by the ISI of the last L samples, due to the
(n−1)th transmitted block symbol, u(n−1), such that causes
the IBI effect:

x(n) =H0u(n) +H1u(n − 1) (8)

Next, in order to express compactly the receive filterbanks
equalizer, we may stack the (Q + 1) blocks of transmission
symbols into a (Q + 1)M × 1 vector columnwise, i.e.,

s̄Q+1(n) � vec([s(n − Q), . . . , s(n)]) (9)

where vec(·) stands for the operation of stacking a
composite-matrix into its vector columnwise. For exam-
ple, if A = [a1 a2 . . . an] is a m × n matrix, then
vec(A) = [aT

1 aT
2 . . . aT

n ]T will become a mn × 1 vector.
Similarly, the (Q + 1)P × 1 vector, ūQ+1(n), and the QP × 1
vectors, x̄Q(n), v̄Q(n), and ȳQ(n), are defined as follows:

ūQ+1(n) � vec([u(n − Q), . . . , u(n)]) (10)

x̄Q(n) � vec([x(n − Q + 1), . . . , x(n)]) (11)

v̄Q(n) � vec([v(n − Q + 1), . . . , v(n)]) (12)

ȳQ(n) � vec([y(n − Q + 1), . . . , y(n)]) (13)

For further discussing the ZF (or PR) solution of the
transceiver for block transmission, we first consider the
cases of noise-free environment, e.g., v(n) = O in (3), and
high SNR as well. Now, with assumption A4) and the result
of (3), the nth equalized block sequence of (2), with noise-
free environment, will reduce to

ŝ(n) =
Q−1∑
q=0

Gq(n)x(n − q)

= G(n)x̄Q(n) = G(n)H ūQ+1(n) (14)

where G(n) = [GQ−1(n) . . . G0(n)] is the M × QP filter-
banks matrix of equalizer, andH is a QP × (Q + 1)P block
Toeplitz channel matrix, which is denoted as

H =



H1 H0 0 . . . 0

0 H1 H0
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 H1 H0


(15)

Since each transmission block s(n) has its corresponding
zero-order precoder matrix, with assumption A4), the rela-
tionship between ŝ(n) and s̄Q+1(n) can be developed, by sim-
ply substituting u(n−q) = F0(n−q)s(n−q), q = 0, 1, . . . ,Q,
into the element of ūQ+1(n), and after some mathematical
manipulation, we obtain

ŝ(n) = G(n)HF Q+1(n)s̄Q+1(n) (16)

where FQ+1(n) is the (Q + 1)P × QM extended precoder
matrix for (Q + 1) blocks of symbols vector s̄Q+1(n), and is
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Fig. 3 Block diagram of the filterbanks transceiver in matrix form for
block transmission.

defined by

FQ+1(n) � diag(F0(n − Q),F0(n − Q + 1), . . . ,F0(n)) (17)

In (17) diag(·) is denoted as the diagonal of the bracket ma-
trix. The block diagram of the filterbanks transceiver, just
described above, in matrix form is demonstrated in Fig. 3
for block transmission.

To eliminate the IBI caused by u(n − 1) in (8), it is
quite straightforward to use the (Q − 1)th equalizer matrix
GQ−1(n) = [OM×L G′Q−1(n)] addressed in [3], hence, the
M × QP filterbank equalizer defined in (14) can be written
as

G(n) = [OM×L G′Q−1(n)GQ−2(n) . . .G0(n)]

= [OM×L Ḡ(n)] (18)

where the M × (QP − L) equalizer matrix is designated as
Ḡ(n) = [G′Q−1(n)GQ−2(n) . . .G0(n)], which is reduced from
G(n), by neglecting the M × L null matrix. We note that
from (17) and (9), the dimension of matrices, FQ(n) and
s̄Q(n), are with QP×QM and QM × 1, respectively. Hence,
by substituting (18) into (16), the equalizer output, , can be
rewritten as

ŝ(n) = Ḡ(n)H̄F Q(n)s̄Q(n) (19)

In (19) H̄ is a (QP − L) × QP S ylvester matrix, which is
reduced from the block Toeplitz channel defined in (15) due
to the filterbanks equalizer Ḡ(n), and is denoted as

H̄ =


h(L) . . . h(0) . . . 0
...

. . .
...

. . .
...

0 . . . h(L) . . . h(0)

 (20)

For obtaining the ZF (or PR) solution, from (19) we have
ŝ(n) = s(n), when the following condition is satisfied [3]:

Ḡ(n)H̄F Q(n) = [OM×(Q−1)M IM] (21)

Thus, the FIR ZF filterbanks equalizer exists if and only if
the (QP − L) × QM matrix H̄FQ(n) is of full column rank;
this will imply that the following two criteria should be sat-
isfied at the same time; (1) the matrix H̄FQ(n) is needed to
be tall, e.g., (QP − L) ≥ QM, and (2) its rank is QM, e.g.,
rank(H̄FQ(n)) = QM.

In practice, if the maximum order of channel, under

specific environments, has been measured with L, for block
transmission, the block transmission length P, under fixed
M, has to be chosen to satisfy the condition just described,
e.g., (QP − L) ≥ QM, that is

i) Choose P = M+1, then the ZF filterbank equalizer has
order of Q − 1 (Q blocks matrices) where Q ≥ L.

ii) Choose P = M+L, then the ZF filterbank equalizer has
zero-order, e.g., Q = 1.

Obviously, choice i) has the minimum block length, it re-
quires only one redundancy symbol for each M data sym-
bols. On the other hand, if choice ii) is considered, the
equalizer structure is simplicity, only zero-order ZF filter-
bank equalizer is required, however, we need to add at least
L redundant samples for each M data symbols. We note that
in [21], under zero-order FIR ZF filterbank equalizer consid-
eration, the authors have proposed the transceiver-designing
scheme, in which the length of minimum redundancy sym-
bols with half of L can be achieved under some specific con-
ditions. However, typically, for simplicity, usually, ii) is se-
lected in practical applications, such as the WLAN, ADSL
[2] and DAB/ DVB [10], [11].

With the above discussion, we learn that for the case of
P − M ≥ L, e.g., Q = 1, the rank (H̄FQ(n)) = QM will
reduce to M. Besides, as indicated in [3] the matrices of the
redundant precoder and equalizer will both retain to be time-
invariant(if the adequate precoder matrix has been adopted).
However, for the case of P − M < L, time-variant precoder
matrix and time-variant equalizing matrices, with order Q−
1, are required. It is noted that under such circumstances,
usually, a long period scrambling is employed for generating
the time-variant precoder matrix for combating the harried
channel zeros location as described in [3], [16], [20].

3. Zero-Order FIR ZF Filterbank Equalizer with
Oblique Projector

In previous section, with general time-variant multirate fil-
terbank formulation, the unified FIR ZF filterbanks equal-
izer addressed in [3] has been briefly reviewed to deal with
the problems of IBI and ISI, induced by imperfect channel.
In general, for CP-OFDM systems the ZF solution is not
guaranteed for P − M < L and P − M ≥ L. It is likely
to be a time-variant filterbanks equalizer e.g., G(n), which
depends highly on the CSI (channel site information) and
time-variant redundant filterbanks precder F0(n), and will
be irrespective of the zeros locations of channel when the
long period scrambling is employed [3].

In this section, by reformulating the model developed
in previous section or [3], an alternative approach associ-
ated with the oblique projector is employed for devising the
new overall ZF filterbanks solution, for both P−M < L and
P −M ≥ L cases. In what follows, we will demonstrate that
the proposed overall ZF solution can be realized by prepro-
cessing the received signal with the oblique projector fol-
lowed by a novel zero-order FIR ZF filterbanks equalizer. It
implies that the IBI is removed with the preprocessing, and
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the zero-order FIR ZF filterbanks equalizer will be equiv-
alent to the ISI-free receiver for CP-OFDM system. The
implication of this will be explored in more detail later.

3.1 Signal Model Reformulation

Recalled from (2) the equalized block symbols ŝ(n) can be
expressed in terms of filterbanks equalizing matrices, G j(n).
Moreover, with the notation of stacking a composite matrix
into vectors, defined in (9)–(13), under noise-free environ-
ment, e.g., v̄Q(n) = O, (or high SNR case), the stacked Q
blocks of the received symbols of (13) can be expressed as

ȳQ(n) = x̄Q(n) =H ūQ+1(n) =HFQ+1(n)s̄Q+1(n) (22)

Note that the procedure of obtaining (22) is quite similar
to the one we have done for deriving (16) from (14), with-
out considering the factor of equalizer. Now, we would like
to reformulate (22) for devising our new proposed overall
FIR ZF filterbanks equalizer in what follows. First, we re-
called that with the assumption of A4) made in Sect. 2, the
redundant precoder matrix for each transmission block has
rank(F0(n)) = M. Here F0(n) is used to introduce the redun-
dancy in the transmitter for block transmissions, and is re-
ferred to as the time-variant redundant precoder. For gener-
ating time-variant redundant precoding matrix, F0(n), it can
be decomposed into two-parts, viz., time-variant and time-
invariant matrices, given by

F0(n) = Σ(n)FR (23)

In (23), the P × M redundant precoder matrix FR represents
the time-invariant portion. On the other hand, a P × P deag-
onal matrix Σ(n) of (23) denotes the time-variant part of
matrix F0(n) for the nth transmission block. Moreover, FR

is composed of a P × M full column rank matrix FC and a
M × M full matrix F, that is

FR = FCF (24)

For CP-OFDM, FC is set to be the P × M redundancy-

generating matrix, [IM | IP−M

O ]T , where IM denotes the

M × M identity matrix. For simplicity, we may introduce
a new matrix defined by FC(n) = Σ(n)FC , in consequence,
from (23), F0(n) can be rewritten as

F0(n) = FC(n)F (25)

Apply the results of (23)–(25) to (17), and with the notation
of Kronecker product, F Q+1(n) can be defined as

FQ+1(n) � diag(FC(n − Q), . . . ,FC(n)) · [IQ+1 ⊗ F] (26)

where ⊗ stands for the Kronecker product [18]. For conve-
nience to introduce the derivation of the proposed new over-
all FIR ZF filterbanks equalizer matrix, we may decompose
the QP× (Q+1)P block Toeplitz channel matrix,H defined
in (15), into submatrices, i.e.,

H =



H1 H0 O . . . O

O H1 H0
. . .

...
...

. . .
. . .

. . . O
O . . . O H1 H0


= [D2 | D1 | D0] (27)

where H0 and H1 were defined in (6) and (7). With the
block submatrices D2, D1, and D0, further discussion can
be performed. From (27), we learn that matrix D2 can be
denoted as in (28); it can be further decomposed into sub-
matrices, by using the structure of H1 defined in (7), i.e.,

D2 =



0 . . . 0 h(L) . . . h(1)
...
. . .

... 0
. . .

...

0 . . . 0
. . . . . . h(L)

...
. . .

...
...

...
...

0 . . . 0 0 . . . 0


= [OQP×(P−L) | DL] (28)

Now, by substtuting (26) and (27) into (22), we get

ȳQ(n) = [D2 | D1 | D0]diag(FC(n − Q), . . . ,FC(n))

× [IQ+1 ⊗ F]s̄Q+1(n) (29)

From Appendix, the reformulated received block signal
model for CP-OFDM (defined in (29)) is obtained and de-
fined in (A· 12) for noise-free case. If we take the noise into
consideration, it gives

ȳQ(n) = Z(n)b(n) +H0(n)s′(n) + v̄Q(n) (30)

where Z(n) and b(n) were defined in two lines below (A· 11)
of Appendix. So far, we have reformulated the signal
model with a new form of (30), which can be employed
to designing the overall FIR ZF solution for block trans-
mission. Our first contribution is to build up the matrices
Z(n) = [HL(n) | H1(n)] and H0(n), for both P − M < L
and P − M ≥ L cases, where matrices H0(n), H1(n), H2(n),
and HL(n), were designated in (A· 5)–(A· 8) of Appendix.
In fact, they can be viewed as the effective channel matri-
ces, which combine the LTI (linear time invariant) channel
matrixH and the respective matrix FC(n). This implication
is very important, especially for the case of P − M < L, and
will be discussed in more detail later.

3.2 Novel Solution for Designing FIR ZF Filterbanks
Equalizer

For further discussion, we observed from (30) that the de-
sired data block for transmission s(n), is contained in s′(n)
(see (A· 2) of Appendix), while vectors Z(n)b(n) and v̄Q(n)
are the undesired components. As will be proved in the fol-
lowing theorem, the overall FIR ZF solution, with a compact
form, could be obtained for both P −M < L and P −M ≥ L
cases.
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Theorem 1. Assume that the assumptions of A0)-A4) are
hold, and the number of blocks for the received symbols
ȳQ(n), Q, is chosen to satisfy the condition, e.g. QP ≥
QM + L. If the composite matrix [Z(n)|H0(n)] (Z(n) ∈
CQP×[(Q−1)M+L], H0(n) ∈ CQP×M) is with full column rank,
in general, for CP-OFDM with P − M < L and P − M ≥ L,
the equalizing matrix of the unbiased novel ZF equalizer, for
estimating the nth data block symbols s(n) will be unique,
and is given by

Gob(n) = F−1M#
H0Z(n)

= F−1(HH
0 (n)P⊥Z(n)H0(n))−1HH

0 (n)P⊥Z(n) (31)

It refers to as the overall FIR ZF filterbanks equalizer, with
oblique projector, where the superscripts #, H and ⊥ denote
the oblique pseudo-inverse [6], [7] (and therein), Hermi-
tian transpose, and the orthogonal complement, respectively.
Matrix P⊥Z(n) e.g., P⊥Z(n) = I − Z(n)Z(n)†, is denoted as the
orthogonal complement projection, whose range space is the
orthogonal complement of column space of Z(n), and whose
null space is the column space of Z(n). The superscript †
denotes the pseudo-inverse. Also, in (31) matrix F−1 is des-
ignated as the inverse of a square matrix F.

Proof. since matrix HL(n) of Z(n) has L columns, if CP-
OFDM is concerned and the number of blocks, Q, for the
received data block sequence ȳQ(n) satisfied the condition,
e.g., QP ≥ QM + L, the composite matrix [Z(n)|H0(n)]
will guarantee to be a tall matrix. Moreover, if matrix
[Z(n)|H0(n)] is with full column rank, the least-square so-
lution for estimating s′(n) will be unique and unbiased [6],
[19]. With the oblique projector approach [6] and provided
CSI, the term Z(n)b(n) causes IBI in (30) can be viewed as
the structure-noise, while the noise term v̄Q(n) is referred to
as the unstructured noise. To obtain the least-square estima-
tion of s′(n), the dominated structure noise can be removed
by projecting the received block symbols ȳQ(n) of (30) onto
the column space of H0(n) along a direction parallel to the
structure-noise column space of Z(n). Note that the column
spaces of both H0(n) and Z(n) need not to be orthogonal
complement [6], [7]. From [6], the oblique projection corre-
sponding to the nth transmission data block, is defined by

EH0Z(n) � H0(HH
0 (n)P⊥Z(n)H0(n))−1HH

0 (n)P⊥Z(n) (32)

The first term of (30), viewed as the structure-noise, will be
completely removed, after oblique projection EH0Z(n):

EH0Z(n)ȳQ(n)

= EH0Z(n)Z(n)b(n)

+ EH0Z(n)H0(n)s′(n) + EH0Z(n)v̄Q(n)

= O +H0(n)s′(n) + EH0Z(n)v̄Q(n) (33)

While the second term, H0(n)s′(n), remains unchanged due
to the property of oblique projection. In consequence, using
the fact that s′(n) is contained in the second term of (33),
H0(n)s′(n), the estimation of s′(n) can be performed by tak-
ing the pseudo-inverse of H0(n) to get

Fig. 4 The proposed FIR ZF filterbanks equalizer with the reformulated
received signal model.

ŝ′(ob)(n) = H†0(n)EH0Z(n)ȳQ(n) =M#
H0Z(n)ȳQ(n) (34)

By using the assumption that matrix F is with full rank and
square, the inverse matrix F−1 exists. We note that, usually,
the matrix F is chosen to be a unitary matrix although it is
not necessary. From (A· 2) of Appendix, we obtain the nth
equalized block sequence, i.e.,

ŝ(ob)(n) = F−1ŝ′(ob)(n) = F−1M#
H0Z(n)ȳQ(n) (35)

Based on (35), we may define the equalizing matrix,Gob(n),
which is the unique ZF equalizer, for equalizing the nth re-
ceived block symbols, that is

Gob(n) = F−1M#
H0Z(n)

= F−1(HH
0 (n)P⊥Z(n)H0(n))−1HH

0 (n)P⊥Z(n)

�

This completes the proof of Theorem 1. For con-
venience, with the results derived in Theorem 1, the
transceiver model with the proposed overall FIR ZF filter-
banks equalizer can be depicted in Fig. 4 for block transmis-
sions. Such that the novel overall FIR ZF equalizing ma-
trices, Gob(n), could be derived for both P − M < L and
P − M ≥ L. This is the second contribution of this paper.
In next section, we would like to emphasize the advantage
shown by using the oblique projection, especially for insuf-
ficient redundant symbols case.

3.3 Decomposition of the Overall FIR ZF Equalizer Ma-
trices

It is of interest to address the merits of our proposed ap-
proach with the oblique projection, especially when the case
of P − M < L (e.g., insufficient redundant symbols) is con-
sidered. Based on the reformulated signal model and the
results demonstrated in Theorem 1, in previous subsections
we have shown that the perfect reconstruction of the desired
transmitted symbols for both cases, e.g., P − M < L and
P − M ≥ L, can be achieved by the proposed approach, as
long as matrix [Z(n)|H0(n)] is with full column rank. In
what follows, with the property of oblique projector, the
overall FIR ZF solution described in Theorem 1 can be fur-
ther explored. First, with the definitions given in (34) and
(35), and the results of (A· 7) and (27), we have
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ŝ′(ob)(n) = H†0(n)EH0Z(n)ȳQ(n)

ŝ(ob)(n) = F−1(H̄H
0 (n)H̄0(n))−1H̄H

0 (n)︸������������������������������︷︷������������������������������︸
G′0(n)

× CsEH0Z(n)ȳQ(n)︸��������������︷︷��������������︸
y′(n)

(36)

where Cs = [OP×(Q−1)P IP] and H̄0(n) = H0FC(n). By
using (33) it gves

y′(n) = Cs
(
H0(n)s′(n) + EH0Z(n)v̄Q(n)

)
= H̄0(n)s′(n) + CsEH0Z(n)v̄Q(n)

= H̄0(n)Fs(n) + v′(n) (37)

From (36) and (37), we learn that the proposed FIR ZF
equalizing matrices, with the form obtained in (31), has an
inherent decomposition structure. It is achieved by first pro-
jecting the received data block sequence ȳQ(n) onto the sub-
space of the desired data block sequence along with a di-
rection parallel to the structure-noise subspace. In conse-
quence, a zero-order FIR ZF equalizing matrix G′0(n) (see
(36)) is employed for obtaining the estimated data block se-
quence ŝ(ob)(n). That is, by preprocessing the received data
block sequence, ȳQ(n) defined in (30), using the oblique pro-
jection, the term Z(n)b(n) (viewed as the structure noise)
can be completely removed to achieve IBI-free block trans-
missions, for the cases P − M < L and P − M ≥ L.
For noise-free environment, after the preprocessing just de-
scribed, matrix G′0(n) can be viewed as the ISI-free receiver
with the zero-order FIR ZF filterbanks equalizer, related to
the IBI-free block symbols, to achieve the perfect recon-
struction.

Note also that the equalizing matrix G′0(n) of the zero-
order FIR ZF equalizer is related to H̄0(n)Fs(n). This re-
sult is of interest because that the oblique projection acts
like Fourier transform, for CP-OFDM systems, such that
it could be used to transform the time domain data into
independent frequency bins. Each frequency bin has its
own corresponding one-tap equalizer. For convenience, the
decomposition of the proposed overall FIR ZF solution is
illustrated in Fig. 5, where the block diagram depicted in
Fig. 5(a) is the decomposition of the block with dashed-line
illustrated in Fig. 4, while Fig. 5(b) is the equivalent base-
band model for block transmissions, based on the proposed
novel approach under P − M < L or P − M ≥ L, which is
combined from Fig. 4 and Fig. 5(a). As discussed above, the
third contribution of this paper is that the proposed novel
overall FIR ZF filterbanks equalizer can be expressed in
a decomposition form, which enables us to treat the IBI
and ISI effects, separately. That is, using the oblique pro-
jector the effect of IBI can be removed, even for the case
P −M < L, thus, the novel ISI-free receiver with zero-order
FIR ZF filterbanks equalizer can be developed. Although,
they may be time-variant for a specific channel with various
zeros location, as can be verified in the simulation results
given in next section, the proposed time-invariant equaliz-
ing matrix Gob can be employed, successfully, for different

(a)

(b)

Fig. 5 (a) The decomposition of the dashed-line block diagram in Fig. 4.
(b) The proposed equivalent discrete-time baseband model for block trans-
missions.

channel environments. Moreover, along with our proposed
approach, the concept of SSDT (Site Selection Diversity
Transmission) of FBI (Feedback Information) in 3GPP stan-
dard [20] can be applied to obtain the time-invariant equal-
izing matrices.

4. Computer Simulations and Conclusions

In this section, computer simulations are carried out to ver-
ify the merits of proposed novel overall FIR ZF solution,
which was derived in Theorem 1 of Sect. 3. In the following
simulations, we first verify the capability of perfect recon-
struction (PR) of the desired block symbols with the pro-
posed overall FIR ZF solution, developed in Theorem 1. Af-
ter that, we would like to examine the system performance,
in terms of bit-error-rate (BER), and compared with the one
suggested in [3], under different channel environments.

Case 1: Perfect Reconstruction (Noise-free channels for
P = M + L and P − M < L)

To check the capability of PR with the proposed new over-
all ZF solution developed in Theorem 1, based on the re-
formulated signal model, we first consider the case of P =
M + L, with parameters M = 32(desired block data sym-
bols), L = 4(order of channel impulse response), P =
36(transmitted block symbols), and the random generated
FIR channel hT

1 (n) = [−0.499 − 0.301 j 0.368 + 0.193 j −
0.421− 0.178 j 0.306+ 0.143 j − 0.390− 0.108 j]. Since un-
der the assumptions described in Theorem 1, the minimum
order of Q (e.g., Q = 1) is satisfied, the results of demon-
strating the PR are given in Fig. 6, where BPSK modulation
is adopted. In Fig. 6(a) the original data stream contains two
blocks of data symbols (64 symbols), where the last block
of data symbols (32 symbols) separated with the dashed-line
is the desired data symbols. Since each transmitted block,
by definition has P = 36 symbols (included P − M = 4
cyclic prefix symbols), we then have the results shown in
Fig. 6(b) being the IDFT output with adding cyclic-prefix,
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Fig. 6 Perfect reconstruction of the proposed approach for CP-OFDM
with P = M + L, e.g., (P,M,L)=(36,32,4) for noise-free channel (h1(n)).
(a) Original and neighborhood block symbols, (b) IDFT output with cyclic-
prefix, (c) channel output ȳ1(n), (d) recovery block symbols.

for CP-OFDM systems. Accordingly, in Fig. 6(c) we have
the received symbols, ȳ1(n)(with Q = 1), after passing
through the symbols of Fig. 6(b) through the channel with
order L = 4. With the proposed overall FIR ZF filterbanks
equalizer, as can be seen in Fig. 6(d), the PR of the desired
block of data symbols could be achieved, compared with the
desired block of data symbols shown in Fig. 6(a).

Next, with similar assumptions, under the condition of
P − M < L with M = 8 and P = 9, if the case with the min-
imum redundancy, e.g., P − M = 1, and the random gener-
ated FIR channel hT

2 (n) = [−0.011−0.304 j 0.130+0.235 j−
0.038 − 0.182 j 0.130 + 0.188 j − 0.025 − 0.1 j 0.181 + 0.22 j
0.225 + 0.003 j 0.778 − 0.012 j] is considered, as demon-
strated in Fig. 7, similar results are obtained. Again, in
Fig. 7(d), the recovery block data symbols are the same with
the original block data symbols, for Q = L = 7 received
block sequence, ȳ7(n), as shown in Fig. 7(c). We note that
the value of amplitude given in both Fig. 6 and Fig. 7 are
normalized, also only the real part of amplitude is shown.

For further investigation, in the following two cases
(Cases 2 and 3), we would like to verify numerically the
equivalency, in terms of the BER performance, of the pro-

Fig. 7 Perfect reconstruction of the proposed approach for CP-OFDM
with P − M < L, e.g., (P,M,L)=(9,8,7) for noise-free channel (h2(n) ). (a)
Original and neighborhood block symbols, (b) IDFT output with cyclic-
prefix, (c) channel output ȳ7(n), (d) recovery block symbols.

posed overall FIR ZF solutions and the one provided in [3],
e.g., with the unified FIR ZF equalizer matrices, under dif-
ferent noisy channel environments. Here, we assume that
the additive noise v(n) is white Gaussian processes with
zero-mean, and uncorrelated with the transmitted symbols
s(n). Also, the average energy per symbol is used to evalu-
ate the system performance, and is defined by

Es = (1/M)
∑i=M

i=1
fH

i (n)fi(n).

The covariance matrix of the QP × 1 block noise vector,
v̄Q(n), is denoted as

Rv̄v̄ � E[v̄Q(n)v̄H
Q(n)] = σ2

v IQP.

Moreover, for block-based symbol detection, the nth equal-
ized output block symbol, with the ZF equalizing matrix
G(n), can be expressed as

ŝ(n) = A0s(n) + v′(n)

where A0 is the amplitude of desired block data symbols
with positive real value. In consequence, the related noise
covariance matrix for the nth equalized output block symbol
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is designated by

Rv′v′ � E[G(n)v̄Q(n)v̄H
Q(n)GH(n)] = σ2

vG(n)GH(n).

The average error probability can be evaluated by averaging
the error probability of each symbol of the nth block, and is
given by

Pae =
1
M

M∑
i=0

Pie (38)

where Pie is denoted as the symbol error probability of
BPSK in AGN channel environment, of the related ith el-
ement of . From [3] Pie is rewritten as

Pie =
1
2

erfc


A0√

σ2
v [G(n)GH(n)] j

 (39)

where er f c(x) � 2/
√
π
∫ ∞

x
e−x2

dx is denoted as the comple-
mentary error function, and [G(n)GH(n)] j represents the jth
diagonal element of matrix G(n)GH(n).

Case 2: Proof of Equivalency with [3] (Noisy channels
for P = M + L)

We first investigate the BER performance with the condi-
tion where M = 32 and P = 36, for three different FIR
channels of order L = 4. For the purpose of fair compar-
ison, in the first case the impulse response of channel of
h3(n), used in [3] is considered, where channel zeros are
located at 1, 0.9e j9π/20, 1.1e− j9π/20, and −0.8. For further
investigation, two other random generated FIR channels de-
fined below are given; hT

4 (n) = [−0.5593 − 0.185 j 0.393 +
0.097 j − 0.45 − 0.1 j 0.318 + 0.069 j − 0.409 − 0.056 j] and
hT

5 (n) = [−0.579+0.179 j−0.335−0.088 j 0.473+0.105 j−
0.264 − 0.057 j − 0.447 − 0.069 j]. We noted that when a
time-invariant precoding is considered in Case 2 and 3 (see
later) for computer simulations, the diagonal matrix Σ(n)
with identity matrix is used. However, as indicated and
described in [3], if a time-variant precoding matrix is de-
sired, the diagonal terms of Σ(n) are pseudo-noise binary
code. First, let us consider the case of P = M + L, the re-
sults with h3(n) are shown in Fig. 8, in terms of the average
BER evaluated by (38). Since the channel h3(n) has zero
located on the unit circle, as pointed out in [3], the perfor-
mance would be degraded, when CP-OFDM is concerned.
Although, under such circumstance, the FIR ZF filterbanks
equalizer does not actually exist for h3(n), still the proposed
overall ZF solution (e.g., solid line) could perform equiva-
lent to the unified FIR ZF solution [3] (e.g., line with star);
they are agreed quite well with each other. Moreover, by us-
ing matrix Σ(n) for CP-OFDM systems, as shown in Fig. 8
(e.g., dashed-line and line with circle), we learn that the ZF
equalizer matrix is existed. This is because that matrix Σ(n)
can be viewed as the scrambling process that corresponds to
the time-variant precoding matrix suggested in [3]. Again,
if those same time-variant precoding matrices are employed
with the proposed scheme developed in Theorem 1, we will

Fig. 8 Performance comparison of the proposed scheme with [3], for
CP-OFDM with P = M + L, e.g., (P,M,L) = (36,32,4) for noisy chan-
nels; h3(n), h4(n)(random channel 1) and h5(n)(random channel 2). The
effect of using the scrambling process is also examined.

have the same result (e.g., dashed-line) as that addressed in
[3]. This implies that the average BER compared with the
results without using the scrambling process may be further
improved.

Next, it is of interest to use the random generated chan-
nels, viz., h4(n)(the random channel 1) and h5(n)(the ran-
dom channel 2) to investigate the proposed overall ZF solu-
tion and verify some of the assumptions addressed in The-
orem 1. Indeed, the purpose of using random generated
channels, h4(n) and h5(n), is to show the fact that exclud-
ing the worst case (e.g., in case of h3(n)), the full column
rank of [HL(n) | H1(n)] assumptions used in Theorem 1,
could be almost guaranteed without time-invariant precod-
ing matrix, that was employed in our approach in obtain-
ing the ZF equalizer matrix. This provides the possibility
of using site selection diversity transmission as suggested
in Sect. 3.3. The results are also shown in Fig. 8 with our
proposed scheme (e.g., dotted line and dash-doted line),
which again, agree quite well with the results (e.g., lines
with square and with up-triangle) using the ZF solution pro-
vided in [3]. We may conclude that in all cases, for CP-
OFDM systems, the performance with our proposed ZF so-
lution is the same with that using the unified ZF solution
suggested [3], for P = M + L, under the same channel envi-
ronment.

Case 3: Proof of Equivalency with [3] (Noisy channels
for P − M < L)

Finally, we would like to give more numerical results, under
the condition P−M < L, and to verify that with the compact
ZF equalizer matrices derived in Theorem 1, is equivalent to
the one derived in [3], for CP-OFDM systems. In Fig. 9(a)
the results are given for the case with parameters, M = 6,
P = 8, L = 4 and Q = 2. Again, for the purpose of com-
parison, h6(n) used in [3] is examined, in which the zeros
are located at e j2πk/M , for k = 0,1,2,3. Due to the channel
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zeros locations; as indicated in [3] by using the scrambling
code, e.g., Σ(n), we could obtain the time-variant precod-
ing matrices, under the condition P − M < L. As benefit
from the suggestion given in [3], it is very helpful for the as-
sumption of Theorem 1 to be subsisted. In fact, as shown in
Fig. 9(a), without using the scrambling process, the results
with the proposed scheme and the ZF solution of [3], which
are sketched by solid line and line with star, respectively,
could not perform well. However, with the scrambling pro-
cess, as shown in Fig. 9(a), viz., the dash-doted line and the
line with circle, the BER performance could be improved,
dramatically, with our approach and the one addressed in
[3]. In addition, we would also like to investigate the perfor-
mance, for P−M < L, when the other two random generated
FIR channels, h7(n) (random channel 3) and h8(n) (random
channel 4), are considered, i.e., hT

7 (n) = [0.453 + 0.277 j −
0.472−0.194 j 0.376+0.153 j−0.402−0.144 j 0.320+0.085 j]
and hT

8 (n) = [−0.572 + 0.319 j 0.072 − 0.309 j − 0.420 +
0.190 j 0.004 − 0.258 j − 0.425 + 0.094 j]. The results are
given in Fig. 9(a) for the proposed method (e.g., dotted line
and dashed line), and the ZF solution suggested in [3] (e.g.,
lines with square and with up-triangle). As evident from the
results shown in Fig. 9(a), the proposed new overall FIR ZF
filterbanks equalizer did have exactly the same performance,
in terms of average BER, with that developed in [3], under
P − M < L.

In the last case, the system performance with minimum
redundancy, P = M + 1, for different size of received block
symbols, ȳQ(n), is evaluated, where the parameters M = 16,
L = 5, and the FIR channel defined in what follows is used,
i.e., hT

9 (n) = [−0.56 − 0.198 j 0.327 + 0.105 j − 0.461 −
0.118 j 0.259+0.07 j−0.437−0.079 j 0.161+0.082 j]. First,
we note that to satisfy the condition, QP ≥ QM + L, with
the proposed scheme developed in Theorem 1, the minimum
received block size, Q = L = 5, is required. The results
with our proposed overall FIR ZF equalizer are shown in
Fig. 9(b), which is sketched by the solid line, while the re-
sults with the unified ZF solution [3] is indicated using the
line with circle. Similarly, the cases for Q = 6, 7, 8 and
11, are examined, in which the results, with our proposed
FIR ZF filterbanks equalizer, are shown by dashed, dotted,
dash-dotted and star lines, respectively. Correspondingly,
the lines of up-triangle, right-triangle, diamond and square
are sketched for the unified ZF solution [3]. From the sim-
ulation results given in Fig. 9(b), we observed that our pro-
posed approach is equivalent with the one provided in [3],
with different value of Q. Although, the value of Q = 5 is
enough to satisfy the condition (for minimum redundancy
case) employed in Theorem 1, but the system performance
is worse, compared with the cases using larger value of re-
ceived block size Q. However, as can be seen from Fig. 9(b),
the gap of BER improvement becomes less, when the size
of the received block, Q, is larger than 8. In practical ap-
plications the BER performance and the size of Q should
be traded off, in fact, we are not able to get further benefit,
if the size of received block symbols for ZF equalization is
increased without limit. But, if we desire to use less redun-

(a)

(b)

Fig. 9 Performance comparison of the proposed scheme with [3],
for CP-OFDM systems, under the condition P − M < L. (a) For
(P,M,L)=(8,6,4), the effect due to the scrambling process and the gener-
ated channels, e.g., h6(n), h7(n) and h8(n). (b) For (P,M,L)=(17,16,5).
The BER improvement with different block sizes of the received block data
symbols for random generated channel h9(n).

dancy for block transmissions to achieve desired BER per-
formance, the increase of the received block size seems to be
a direct way for desired data symbols estimation. The phe-
nomenon just described was not addressed in [3], especially,
for P − M < L (insufficient redundancy) case. With the re-
sults shown in Fig. 9(b) and the demonstration in Sect. 3.3,
our proposed scheme could be employed to decompose the
overall FIR ZF filterbanks equalizer into the form depicted
in Fig. 5, for arbitrary block size Q, thus results in com-
plexity reduction for designing the optimum transceiver of
OFDM systems.

Finally, we may conclude that in this paper, for CP-
OFDM, based on the reformulation of the received block
symbols of transceiver model, an alternative approach to de-
signing the overall FIR ZF filterbanks equalizer has been
proposed, with the oblique projection approach. The pro-
posed scheme can be decomposed as the pre-processor (us-
ing the oblique projector) followed by the ISI-free receiver
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with the zero-order FIR filterbanks equalizer, to achieve per-
fect symbols reconstruction, thus the complexity of design-
ing the optimum FIR filterbanks equalizer can be reduced,
dramatically, when block size Q is increased. Also, the pro-
posed scheme could be employed to combat the effects of
IBI and ISI, separately, for CP-OFDM systems, whether in
sufficient or insufficient redundancy environments. More-
over, in all cases, we verified numerically that the proposed
scheme is equivalent to that derived in [3], under the same
assumptions and conditions.
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Appendix

Recalled that the nth received data block sequence ȳQ(n) de-
fined in (29) is given by

ȳQ(n) = [D2 | D1 | D0]diag(FC(n − Q), . . . ,FC(n))

× [IQ+1 ⊗ F]s̄Q+1(n) (A· 1)

Since Fs(n) is a M × 1 vector, for further discussion, we let

s′(n) � [s′(nM), s′(nM + 1), . . . , s′(nM + M − 1)]T

= Fs(n) (A· 2)

Similarly, we may define a new (Q + 1)M × 1 vector, by
stacking successive Q + 1 blocks of s′(n) , i.e.,

s̄′Q+1(n) � vec([s′(n − Q), . . . , s′(n)])

= [IQ+1 ⊗ F]s̄Q+1(n) (A· 3)

In addition, we combine matrix H defined in (15) with
diag(FC(n − Q), . . . ,FC(n)) to form a time-variant channel
matrix H̃(n) for the nth data block sequence s̄Q+1(n), where
H̃ (n) is defined as

H̃(n) � H · diag(FC(n − Q), . . . ,FC(n))

= [D2 | D1 | D0]diag(FC(n − Q), . . . ,FC(n))

= [H2(n) | H1(n) | H0(n)] (A· 4)

In (A· 4), the submatrices H2(n), H1(n), and H0(n) are time-
variant matrices with the corresponding dimension, QP×M,
QP × (Q − 1)M and QP × M, respectively. From (A· 4) we
learn that the submatrices are designated by

H2(n) = D2FC(n − Q) (A· 5)

H1(n) = D1diag(FC(n − Q + 1), . . . ,FC(n − 1)) (A· 6)

H0(n) = D0FC(n) (A· 7)

For further discussion, we note that matrix H2(n) of (A· 5)
can be permutated for columns, and divided into a null sub-
matrix and the submatrix with nonzero columns. Such that
the product of D2 and FC(n−Q) will contain just L nonzero
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columns, by assumption A3). In addition, it is known that by
solving a linear system, AX = B, for obtaining the desired
parameter X, with given parameters A and B, is equivalent
to solving A′X′ = B, where A′ = APm, X′ = P−1

m X and
Pm is the permutation matrix [22]. Accordingly, we may
obtain X = PmX′, if X′ is solved. This means that the col-
umn permutation of A with a corresponding row permuta-
tion of unknown parameter vector X will, indeed, not affect
the solution of unknown parameter vector. Hence, by per-
mutation of columns we may collect the nonzero columns
of D2FC(n − Q) to form the submatrix HL(n); it represents
the nonzero columns, while let the rest zero-columns be a
null submatrix. Consequently, H2(n) defined in (A· 5) can
be rewritten as

H2(n) = [OQP×(M−L) HL(n)] (A· 8)

In (A· 8) HL(n) is a QP× L matrix and has been permutated.
After substituting (A· 3) and (A· 4) into (29), we obtain

ȳQ(n) = H̃(n)s̄′Q+1(n)

= [H2(n) | H1(n) | H0(n)]s̄′Q+1(n) (A· 9)

Similar to the decomposition of matrix H̃ (n) defined in
(A· 4), we may decompose s̄′Q+1(n) of (A· 3), correspond-
ing to the sub-matrices H2(n), H1(n), and H0(n). In con-
sequence, using the fact of (A· 2), the decomposition of
s̄′Q+1(n) can be represented as

s̄′Q+1(n)

= [s′T (n − Q) | s′T (n − Q + 1), . . . , s′T (n − 1) | s′T (n)]T

= [s′T (n − Q) | s̄′TQ−1(n − 1) | s′T (n)]T (A· 10)

It should be noted that in obtaining (A· 10) we have used the
result that matrix H2(n) (defined in (A· 8)) is with column
permutation, and the corresponding vector s′T (n − Q) being
with row permutation. Hence, the Q blocks of received sym-
bols ȳQ(n), under noise-free environment, can be obtained
by simply substituting (A· 10) into (A· 9) to get

ȳQ(n)

= H2(n)s′T (n − Q) +H1(n)s̄′TQ−1(n − 1) +H0(n)s′T (n)

= HL(n)k(n) +H1(n)s̄′TQ−1(n − 1) +H0(n)s′T (n) (A· 11)

where k(n) = [s′((n−Q)M+M−L), . . . , s′((n−Q)M+M−
1)]T . Define the composite matrix Z(n) = [HL(n) | H1(n)]
and the composite vector b(n) = [kT (n) | s̄′TQ−1(n − 1)], such
that (A· 11) could be rewritten as

ȳQ(n) = Z(n)b(n) +H0(n)s′(n) (A· 12)
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